
TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Lock-free programming and
Software Transactional Memory

• Parallel linked queues

• Software transactional memory

Today’s menu

Lesson’s menu

• Parallel linked queues
• constructs and techniques

• pick the right constructs

• Software transactional memory
• constructs and techniques

Today’s menu

Lesson’s menu

A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this lesson, we present:

• a lock-free queue data structure, which involves minimal synchronization costs (in

particular, it uses no locking)

• software transactional memory, which supports composability in

lock-free programming

Synchronization costs

Parallel linked queues

We present another example of lock-free data structure: an implementation of a linked queue that

supports parallel access

A queue data structure offers obvious opportunities for parallelization – because insertion and removal of

nodes occurs at two opposite ends of a linked structure

At the same time, it requires to carefully consider the interleaving of operations, and to take measures to

prevent modifications that lead to inconsistent states

We will use regular Java syntax, without emphasizing opportunities for object-oriented abstraction and

encapsulation, so as to have a different presentation style, complementary to the one adopted for linked

sets

Parallel linked queue

We use linked lists to implement a lock-free queue data structures with interface:

interface Queue<T>

{

// add ‘item’ to back of queue

void enqueue(T item);

// remove and return item in front of the queue

// raise EmptyException if queue is empty

T dequeue() throws EmptyException;

}

The interface of a queue

7

To implement data structures that are correct under concurrent access without using any locks we

need to rely on synchronization primitives more powerful than just reading and writing shared

variables

We are going to use a variant of the compare-and-set operation:

class AtomicReference<V> {

V get(); // current reference

void set(V newRef); // set reference to newRef

// if reference == expectRef, set to newRef and return true

// otherwise, do not change reference and return false

boolean compareAndSet(V expectRef, V newRef);

}

Atomic references

8

The underlying implementations of queues use singly-linked lists, which are made of chains of nodes

- Every node:

• stores an item– its value

• points to the next nod in the chain

To build a lock-free implementation, nextis a reference that supports compare-and-set operations (thus,

need not be volat i le)

class QNode<T>

{

// value of node

T value;

// next node in chain AtomicReference<QNode<T>> next;

QNode(T value) {

this.value = value;

next = new AtomicReference<>(null); }

}

Nodes

9

x

value/item

next

node

A list with a pair of head and tail references implements a queue:

• a sentinel node points to the first element to be dequeued

• the queue is empty iff the sentinel points to null

• head points to the sentinel (front of queue)

• tail points to the latest enqueued element (back of queue), or the sentinel if the queue is

empty

The sentinel (also called “dummy node”) ensures that head and tail are never null

Queues as chains of nodes

10

sentinel

b x g

A non-empty queue:

head tail

sentinel

An empty queue:

head tail

class LockFreeQueue<T> implements Queue<T>

{

// access to front and back of queue

protected AtomicReference<QNode<T>> head;

protected AtomicReference<QNode<T>> tail;

// constructor creating empty queue

public LockFreeQueue() {

// value of sentinel does not matter

QNode<T> sentinel = new QNode<>();

head = new AtomicReference<>(sentinel);

tail = new AtomicReference<>(sentinel);

}

Head, tail, and empty queue

11

sentinel

head tail

The method enqueue adds a new node to the back of a queue – where

tail points. It requires two updates that modify the linked structure:

1. update last: make the last node in the queue point to the new node

2. update tail: make tail point to the new node

Each update is individually atomic (it uses compare-and-set), but another thread may

interfere between the two updates:

• repeat update last until success

• try update tail once

• the implementation should be able to deal with a “half finished” enqueue operation (tail

not updated yet), and finish the job – this technique is called helping

Enqueue operation

12

public void enqueue(T value) {

// new node to be enqueued

QNode<T> node = new QNode<>(value);

while (true) { // nodes at back of queue

QNode<T> last = tail.get();

QNode<T> nextToLast = last.next.get();

// if tail points to last

if (last == tail.get())

{ // and if last really has no successor

if (nextToLast == null) {

// make last point to new node

if (last.next.compareAndSet(nextToLast, node))

// if last.next updated, try once to update tail

{ tail.compareAndSet(last, node); return; }

} else // last has valid successor: try to update tail and repeat

{ tail.compareAndSet(last, nextToLast); } } }

}

Method enqueue

13

fails only if another thread moves tail helps another thread move tail

b x

public void enqueue(T value) {

// new node to be enqueued

QNode<T> node = new QNode<>(value);

while (true) { // nodes at back of queue

QNode<T> last = tail.get();

QNode<T> nextToLast = last.next.get();

// if tail points to last

if (last == tail.get())

{ // and if last really has no successor

if (nextToLast == null) {

// make last point to new node

if (last.next.compareAndSet(nextToLast, node))

// if last.next updated, try once to update tail

{ tail.compareAndSet(last, node); return; }

} else // last has valid successor: try to update tail and repeat

{ tail.compareAndSet(last, nextToLast); } } }

}

Method enqueue

sentinel

If tail points to actual last:

head tail

g
node:

b x

sentinel

head tail

g
node:

public void enqueue(T value) {

// new node to be enqueued

QNode<T> node = new QNode<>(value);

while (true) { // nodes at back of queue

QNode<T> last = tail.get();

QNode<T> nextToLast = last.next.get();

// if tail points to last

if (last == tail.get())

{ // and if last really has no successor

if (nextToLast == null) {

// make last point to new node

if (last.next.compareAndSet(nextToLast, node))

// if last.next updated, try once to update tail

{ tail.compareAndSet(last, node); return; }

} else // last has valid successor: try to update tail
// and repeat

{ tail.compareAndSet(last, nextToLast); } } }

}

Method enqueue

17

sentinel

b x

If tail points to old last:

head tail

g

last last

sentinel

b x

g

The method dequeue removes the node at the head of a queue (where the sentinel points)

Unlike enqueue, dequeueing only requires one update to the linked structure:

• update head: make head point the node previously pointed to by the sentinel; the same

node becomes the new sentinel and is also returned

The update is atomic (it uses compare-and-set), but other threads may be updating the

head concurrently:

• repeat update head until success

• if you detect a “half finished” enqueue operation – with the tail pointing to the sentinel

about to be removed – help by moving the tail forward

Dequeue operation

18

public T dequeue() throws EmptyException {

while (true) // nodes at front, back of queue

{ QNode<T> sentinel = head.get(),

last = tail.get(),

first = sentinel.next.get();

if (sentinel == head.get()) // if head points to sentinel

{ // if tail also points to sentinel

if (sentinel == last)

{ // empty queue: raise exception

if (first == null)

throw new EmptyException();

// non-empty: update tail, repeat

tail.compareAndSet(last, first);

}

else // tail doesn’t point to sentinel

{ T value = first.value;

// make head point to first (new sentinel); retry until success

if (head.compareAndSet(sentinel, first)) return value; } } }

}

Method dequeue

must help move tailbefore updating head

must move head: no other thread can help
12 / 27

public T dequeue() throws EmptyException {

while (true) // nodes at front, back of queue

{ QNode<T> sentinel = head.get(),

last = tail.get(),

first = sentinel.next.get();

if (sentinel == head.get()) // if head points to sentinel

{ // if tail also points to sentinel

if (sentinel == last)

{ // empty queue: raise exception

if (first == null)

throw new EmptyException();

// non-empty: update tail, repeat

tail.compareAndSet(last, first);

}

else // tail doesn’t point to sentinel

{ T value = first.value;

// make head point to first (new sentinel); retry until success

if (head.compareAndSet(sentinel, first)) return value; } } }

}

Method dequeue

b x

If tail needs no update:

head tail

b xb

public T dequeue() throws EmptyException {

while (true) // nodes at front, back of queue

{ QNode<T> sentinel = head.get(),

last = tail.get(),

first = sentinel.next.get();

if (sentinel == head.get()) // if head points to sentinel

{ // if tail also points to sentinel

if (sentinel == last)

{ // empty queue: raise exception

if (first == null)

throw new EmptyException();

// non-empty: update tail, repeat

tail.compareAndSet(last, first);

}

else // tail doesn’t point to sentinel

{ T value = first.value;

// make head point to first (new sentinel); retry until success

if (head.compareAndSet(sentinel, first)) return value; } } }

}

Method dequeue

b

If tail needs update:

head tail

bb

If we were using a language without garbage collection – where objects can be recycled – the
following problem could occur:

1. t is about to CAS head from sentinel node a to node b:

head.compareAndSet(sentinel,first)

2. u dequeues b andx

3. u enqueues a again (the very same node), enqueues y, enqueues p, and then dequeues

a again, so that the samenode a becomes the sentinel again

4. t completes CAS successfully (head still points to t’s local reference sentinel),

but node b is nowdisconnected!

Garbage collection saves the day

The problem we have just seen is known as the ABA problem

It cannot occur in languages that, like Java, feature automatic memory management (garbage

collection)

Our LockFreeQueue implementation relies on garbage collection for correctness: a thread

creates a fresh node (using new) whenever it enqueues a value, which is guaranteed to have a

reference that was not in use before

The ABA problem

18

Software Transactional Memory

19

A strategy to parallelize a task (F, D) should be:

• correct: the overall result of the parallelization is F (D)

• efficient: the total resources (time and memory) used to compute the parallelization are less

than those necessary to compute (F, D) sequentially

A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies – seen

• synchronization costs – seen

• spawning costs – seen

• error proneness and composability

Challenges to parallelization

29

Synchronization is prone to errors such as data races, deadlocks, and starvation

From the point of view of software construction, the lack of composability is a challenge that prevents us from

developing parallelization strategies that are generally applicable

Error proneness and composability

30

Consider an Account class with methods deposit and withdraw that execute atomically

What happens if we combine the two methods to implement a transfer operation?

Method transfer does not execute uninterruptedly: other threads can execute between the call to withdraw and the call
to deposit, possibly preventing the transfer from succeeding

(For example, Account other may be closed; or the total balance temporarily looks lower than it is!)

Error proneness and composability

31

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

class Account {

synchronized void

deposit(int amount)

{ balance += amount; }

synchronized void

withdraw(int amount)

{ balance -= amount; }

}

execute uninterruptedly

None of the natural solutions to composing is fully satisfactory:

• let clients of Account do the locking where needed –error proneness, revealing implementation details,

scalability

• recursive locking – risk of deadlock, performance overhead

With message passing, we encounter similar problems – synchronizing the effects of messaging two independent

processes

Composability

32

class Account {

void // thread unsafe!

deposit(int amount)

{ balance += amount; }

void // thread unsafe!

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

synchronized void

transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

The notion of transaction, which comes from database research, supports a general approach

to lock-free programming:

A transaction is a sequence of steps executed by a single thread, which are executed

atomically

A transaction may:

• succeed: all changes made by the transaction are committed to shared memory; they appear

as if they happened instantaneously

• fail: the partial changes are rolled back, and the shared memory is in the same state it would

be if the transaction had never executed

Therefore, a transaction either executes completely and successfully, or it does not have any effect

at all

Transactions

20

The notion of transaction supports a general approach to lock-free programming:

• define a transaction for every access to shared memory

• if the transaction succeeds, there was no interference

• if the transaction failed, retry until it succeeds

Imagine we have a syntactic means of defining transaction code:

Transactions may also support invoking retry and rollback explicitly

(Note that atomic is not a valid keyword in Java or Erlang: we use it for illustration purposes, and later

we sketch how it could be implemented as a function in Erlang)

Programming with transactions

21

atomic {

// transaction code

}

// retry until success

% execute Function(Arguments)

% as a transaction (retry until success)

atomic(Function, Arguments)

Transactional atomic blocks look superficially similar to monitor’s methods with implicit locking, but

they are in fact much more flexible:

• since transactions do not lock, there is no locking overhead

• parallelism is achieved without risks of race conditions

• since no locks are acquired, there is no problem of deadlocks (although starvation may still

occur if there is a lot of contention)

• transactions compose easily

Transactions are better than locks

no locking, so no deadlock is possible! 22

class Account {

void deposit(int amount)

{ atomic {

balance += amount; }}

void withdraw(int amount)

{ atomic {

balance -= amount; }}

}

class TransferAccount extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount,

Account other)

{ atomic {

this.withdraw(amount);

other.deposit(amount); }}

}

A transactional memory is a shared memory storage that supports atomic updates of multiple memory

locations

Implementations of transactional memory can be based on hardware or software:

• hardware transactional memory relies on support at the level of instruction sets (Herlihy & Moss,

1993)

• software transactional memory is implemented as a library or language extension (Shavit &

Touitou, 1995)

Software transactional memory implementations are available for several mainstream languages

(including Java, Haskell, and Erlang)

This is still an active research topic – quality varies!

Transactional memory

23

We outline an implementation of software transactional memory (STM) in Erlang

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

Clients use an STM as follows:

• at the beginning of a transaction, check out a copy of all variables involved in the

transaction

• execute the transaction, which modifies the values of the local copies of the variables

• at the end of a transaction, try to commit all local copies of the variables

Implementing software transactional memory

24

We outline an implementation of software transactional memory (STM) in Erlang

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

The STM’s commit operation ensures atomicity:

• if all committed variables have the same version number as the corresponding variables in the

STM, there were no changes to the memory during the transaction: the transaction succeeds

• if some committed variable has a different version number from the corresponding variable in

the STM, there was some change to the memory during the transaction: the transaction fails

Implementing software transactional memory

24

The atomic translates into a loop that repeats until the transaction succeeds:

1. check out (pull) the current value of cnt

2. increment the local variable c

3. try to commit (push) the new value of cnt

4. if cnt has changed version when trying to commit, repeat the loop

The counter example – with software transactional memory

26

int cnt;

thread t thread u

int c;

atomic {

c = cnt;

cnt = c + 1;

}

int c;

atomic {

c = cnt;

cnt = c + 1;

}

Atomic -> do-while

26

 (name: cnt, version:x, value:y)

thread t thread u

int c;

do {

// check out cnt

c = c + 1;

} while (!push(cnt, c));

// commit cnt

int c;

do {

// check out cnt

c = c + 1;

} while (!push(cnt, c));

// commit cnt

c = pull(cnt); c = pull(cnt);

An STM is a server that provides the following main operations:

• pull(Name): check out a copy of variable with name Name

• push(Vars): commit all variables in Vars; return fail if unsuccessful

Clients read and write local copies of variables using:

• read(Var): get value of variable Var

• write(Var, Value): set value of variable Var to Value

We base the STM implementation on the gserver generic server implementation we presented in

a previous lectures.

STM in Erlang

28

create(Tm, Name, Value) ->

gserver:request(Tm, {create, Name, Value}).

drop(Tm, Name) ->

gserver:request(Tm, {drop, Name}).

pull(Tm, Name) ->

gserver:request(Tm, {pull, Name}).

push(Tm, Vars) when is_list(Vars) ->

gserver:request(Tm, {push, Vars});

read(#var{value = Value}) -> Value.

write(Var = #var{}, Value) -> Var#var{value = Value}.

STM: operations

29

The storage is a dictionary associating variable names to variables; it is the essential part of the
server state

STM: server handlers

30

stm(Storage, {pull, Name}) ->

case dict:is_key(Name, Storage) of

true ->

{reply, Storage,

dict:fetch(Name, Storage)};

false ->

{reply, Storage, not_found}

end;

stm(Storage, {push, Vars}) ->

case try_push(Vars, Storage) of

{success, NewStorage} ->

{reply, NewStorage, success};

fail ->

{reply, Storage, fail}

end.

The helper function try_push determines if any variable to be committed has a different version
from the corresponding one in the STM

STM: try to push

31

try_push([], Storage) ->

{success, Storage};

try_push([Var = #var{name = Name, version = Version} | Vars], Storage) ->

case dict:find(Name, Storage) of

{ok, #var{version = Version}} ->

try_push(Vars,

dict:store(Name, Var#var{version = Version + 1},

Storage));

_ -> fail

end.

Using the STM to create atomic functions is quite straightforward

Using the Erlang STM

32

An atomic pop operation for a list: An atomic push operation for a list:

% pop head element from ‘Name’

qpop(Tm, Name) ->

Queue = pull(Tm, Name),

[H|T] = read(Queue),

NewQueue = write(Queue, T),

case push(Tm, NewQueue) of

% push failed: retry!

fail -> qpop(Tm, Name);

% push successful: return head

_ -> H

end.

% push ‘Value’ to back of ‘Name’

qpush(Tm, Name, Value) ->

Queue = pull(Tm, Name),

Vals = read(Queue),

NewQueue = write(Queue,

Vals ++ [Value]),

case push(Tm, NewQueue) of

% push failed: retry!

fail -> qpush(Tm, Name, Value);

% push successful: return ok

_ -> ok

end.

The simple implementation of STM we have outlined does not support easily composing

transactions:

To implement composability, we need to keep track of pending transactions and defer commits

until all nested transactions are done

See the course’s website for an example implementation:

Composable transactions?

33

% pop from Queue1 and push to Queue2

qtransfer(Tm, Queue1, Queue2) ->

Value = qpop(Tm, Queue1), % another process may interfere!

qpush(Tm, Queue2, Value).

% atomically execute Function on arguments Args

atomic(Tm, Function, Args) -> todo.

These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the

Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	Slide 1
	Slide 2: Lesson’s menu
	Slide 3: Lesson’s menu
	Slide 4: Synchronization costs
	Slide 5: Parallel linked queues
	Slide 6: Parallel linked queue
	Slide 7: The interface of a queue
	Slide 8: Atomic references
	Slide 9: Nodes
	Slide 10: Queues as chains of nodes
	Slide 11: Head, tail, and empty queue
	Slide 12: Enqueue operation
	Slide 13: Method enqueue
	Slide 14: Method enqueue
	Slide 15: Method enqueue
	Slide 16: Method enqueue
	Slide 17: Method enqueue
	Slide 18: Dequeue operation
	Slide 19: Method dequeue
	Slide 20: Method dequeue
	Slide 21: Method dequeue
	Slide 22: Method dequeue
	Slide 23: Method dequeue
	Slide 24: Garbage collection saves the day
	Slide 25: Garbage collection saves the day
	Slide 26: Garbage collection saves the day
	Slide 27: The ABA problem
	Slide 28: Software Transactional Memory
	Slide 29: Challenges to parallelization
	Slide 30: Error proneness and composability
	Slide 31: Error proneness and composability
	Slide 32: Composability
	Slide 33: Transactions
	Slide 34: Programming with transactions
	Slide 35: Transactions are better than locks
	Slide 36: Transactional memory
	Slide 37: Implementing software transactional memory
	Slide 38: Implementing software transactional memory
	Slide 39: The counter example – with software transactional memory
	Slide 40: The counter example: a successful run
	Slide 41: Atomic -> do-while
	Slide 42: The counter example: a retry run
	Slide 43: STM in Erlang
	Slide 44: STM: operations
	Slide 45: STM: server handlers
	Slide 46: STM: try to push
	Slide 47: Using the Erlang STM
	Slide 48: Composable transactions?
	Slide 49: These slides’ license

